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SUMMARY

Low-aspect-ratio wings having triafqgalarplan forms are treated
on the assumption that tha flow yo’kukkls in plsnes at right angles
-kmthe lonc axis of the airfoils are smiler to the correfqymding
two-iihnensional potentials. Pressure dl.s+milmtionscaused by down-
ward acceleration, -pitchin~,rolli~s aidesl@piqg, and yam are
obta~ned for win~> with anh without dihedral, The stability
dcrivatfl-veucalculated from these distributions are eq?ected to
apply at both subsonic and supersonic speeds, with the exoepticm

-1

of the tranaon~c reg~on, up b a limiting speed at which the
trian@e is no longer narrow compared with the Mach cone from Its

.,

vertex.

INTRODUCTION

. . .. .

The a~aodynmnics of slender symmetrical pointed airfoils
moving ~oint formnost may be approximated as Munlcapproximated the
aerodynamics of slender .Qrships (reference 1). For such bodien
the flow is approximately two dimensional h planes perpendicular
to the axis of eymmdry. The asmmqtion of two-dimensional flows
lea&3 to a vcq si.tiplemathematical procedure for obtaining the
pressure distribution. Refe~ence 2 introduced this method and
treated thnreby the slender pointed airfoil at an anglo of .attaok.
The uethod is suited, as well, to the calculation of the preesure
distributions due to normal acceleration, pitchi~, rolling,
sideslippin& and yawi~. Tn the present analysis the method in
extended tom is applied to the determination of these pressure
dt~tributions for a low-asyect-ratio tr&qular plan fomn. The

—

stability derivatives of the airfoil.are calculated from these
results.
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The analysis of the lifting airfoil showed that if the aitioil
is very slender (very low aspect ratio) the results apply well tnto
the supersonic range with no modification for the effect of
compressibility. The transonic region pro’bablymust be excluded..
The stability derivatives of this report are expectdtm have a
stitlar rqe of application.

The principal part of this Investigationwas carried out during
March and April of 1946.

SYMBOLS

flight velocity .

rectangular coordinates (fig. 2)

incremental flight velocities along X-, y-,
and z~axes of fi~gwre1, respectively; induced flow
velocities along x-, y-, and z-axes of figure 2,
respectively

angular velocities about x-, y-, and z-axes,
respectively (fig. 1)

component of velocity induced on upper surface
parallel to dream velocity

an~e of attack

angle of sideslip

dihedral angle

pressure difference between lower and upper surfaces
of airfoil (positive in qen~eoflift)

density of air

semiwidth of triangle at distance x from vertex

span

root

mean

(base of triangle)

chord (height of triangle)

([ b/2
aerodynamic chord 5 s ~

)

(~00~ chord)2dy = $
so

“2b\aqect-ratio i— .,,C I
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cn

(eke slope ~ =

area of triangle

constant defintid

mrfac e velocity

‘1 y laco% ,

rollin~ moment

)d.tl A—=.
dx 4..

in equation (2s)

pot%ntial

normal force (approximately lift) “

.-

.. .,

-.
—

.’

-.

yawing moment

lateral force

suction force per unit lengbh of edge ,,. .

.-/ L’
lift coefficient “—

( l?)$s

(’ )

Lrollin~-moment coefficient —
&Sb

[2 )
Mpi&hi~-moment coefficient —

+%5
)

yating-nomqnt

.,

Latemal-force ()coefficient —
$;s

profile-drag coefficient ~rofi$*
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Subscripts:

LsE,

R
.

L

vorticfty

Fourier coefficients

induced surface velocity normal

dietance.from wiqj leading edfje
edge

to win~ leading

measured normal

distance of center of gr8vity forward of SC

at traili~ e@e

at leading edge

at right leading edge

at left leading edge

Subscripted parentheses:

( )0 contribution

( )r contribution

Whenever a, ‘&, q,

due to angle of attack

due to dihedral

l?, B, and r are used as subscripts,
nondtienstonal d&riv&ti% is-indicated and this derivative is the-

E310yethrough zero. For example,

c%”[$i.: ‘+%

A dot above a symbol denotes differentiationwith resyect to
thlle●

All angles ere measured in radians,
..

a

;

q-)

.

.
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ANALYSIS.
.“

. .

.

SCOPE

The stkbility derivtitivestreated herein sre listed, together
v5.ththe values found,.fortiem, in table 1. The derivations that
follow give the values with reference tc.the.princiTal body axes

of figure 1 w5th orig:n at the aerodyknic center
~~~0,0)” Con-

version hcs been made to the s~stem of stability axes shown in

fi~yre 5 w5th origin a distance Xcg ~aheaflof tile27 point

(trsu’mformatio aequationsin reference 3). Table I coqrises
parallel coluuyaswhich Qresent the values ?elativg to both systems.

,q@2& . “, ,

-.

Consf.d& a slender isosceles triangle moving wi~ i% vertex
foremost along Its lon@tudinal axis, as in f$gure 1, with velocity V.
Smalllincar disturbance velocities u, v, end w elong tie x-, Y-,
and z-axes.and small s@ul.ar dipturbanm velocities p, q, and r
about the x-, y-, amd z-axes, respeotivel.y,mey be Contemplated...An&
of attack gives rise to w, sithslip, to V, an~ rolling, pitching,
antiyawim; correspond to p, q, and r, res~ectively.

As an examyle,suppose the sole disturbance velocity is w,
caused by..pygleof atteck. (This caf3efcrms the subject of rOference 2.)
The triangular airfoil is assumed to be mowing forward with velocity V
and down:7ar@with ths small velocity aV. “Theairfoil section is.
assumed to l.m’verythin; therefore, only _&hedown~iardmotion disturbs -
the air. TIM tiiangu.larplap fomn is also assumed to be very slender
so that the edges me ne~ly parallel. The flow in any.plane ,
x= constent (coordinate system of fig. 2) dw, to tl.iedo.wntid

.-

motion is.ti’walmost two Mmenslonal. It may be expressed by the
ti:o-tiensiona l’~t~ntialof a h“orfzontalstraight line gmviqg-
dolJmw3rdvith velocity CCV. The horizontal strai~~t line is then”
the section of the airfoil cut by the @ane x = constant.
Planes x = constant m~”be taken anywhere from thg apex b tie
trail% ei@e. -- .- .%
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In case the
straight line is

disturbance velocity is rate of
to be re~arded as rotating with

NACATN NO. 1423

roll T, the
angular veloc$ty pm

The o%her case~ are some~ihatmme complicated and are discussed in
detail in subsequent.uections. In all cases, however, the initial
problem is the determination of the two-dimensional surface potential
for the flow about a stiai@% line with assigned boundary conditions.

With the tvo-dimensional mmf’ace uotential knolm for the mot50n
of the section
upper and lover

x= constant, the yre&ure difference between the
surfaces (positiveupward) is obtained from

23= 2pvuo (1)

In this equation U. is the component of the velocity induced on.the
upper surface prallel to thqstrwm direction and is obtained by
differentiation of the yoteetial in tie stream direction. Equation (1)
expresses Bernoullils law with the approximation of small disturbances=

The assvmptian that the triangular plsnf’orm is very slen~er
is oppressed mathematically by the relation C << 2. The quantity C
is the slope of We sides of the triangle relative to the streem
direction and is equal to one-fourth the aspect ratio. The pressure
distributions derived on this assuxrptionem bu shown to @ valid
only to tie first order in C. (See referenoe 4-,appendix-A.) Thu8,

A2
terms of order C* or ~ will be neglected in c&yarison with

unity wherever!they appear in the analysis.

The validity cd?the analysis depen~ on the assumption that the
disturbance partieters u, ~, Ph/2V, qc/2T, and rb/2V are
emall M “comparisonwith unltyo As in ordinary ltfting-line wing
theory, however, terms in # ‘areof titirest. Some such te=
arise without approximation in the transformation from principal
axes “k stability axes, hut--othersof order C (and hence not
negligible) “resultfrom retention of termq of order ~2 ● For
consistency, therefore, it has appeared necesmry to,neglect all
terms of order a2 in the treatment.

In the determination ofcertain of the stability derivatives,
two cases T!i.1.lbe considered. cage I is for a configuration hav@
no dihedral and case 2, for a cotiiguration ham a small dihedral.
angle.

I
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The derivative Cu. is obtainod”ip reference 2. For

accelerated motion the local pressure difference therein must be
increased by the term

evaluated relative to axes fixed.in the airfoil. This is

If the (small) amgle of attacl$is a,
plane cutting tie airfoil at a distance ~x
two-dimensional I’1owcaused by a flat plate

(2)

the flow pattern in a
ira the nose is tine
haviw the normal

velocity aV. Tho swnlace potential G (referent; 2)

j5=?@Tasiriq “

= -F7 (3)
.- ””.

wfi.erecos q = ~ ami the sign changes in going frcm the upper

surface to the iower surface of the atrfoil. Differentiation of @
with respect to w end substitution in eqtlation(2) yield

.

Integration over the plan form -giveq
caused by & as

the total incremental lift

*

,,-
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Thl.s l.jft divided by ~pV%3 is the incremental lift coefficient,

and the derivative of this coefficient with respect to iz6/2V is
the stability derivative

The center of pressure of

at x=*. Theyi%ch@

%& = & (4}

the distribution of & is found to be

moment about X = 2< is therefore
3

= -&m2c%

This moment dividedby #@@Se is the pitching-moment coefficient,

and its derivative with respect to &E/2V is the stability
derivative ~&. It ts

!

An erlgubr.
angle of attack

%rhere ~ is the

to he substituted

u.

DERIVATIVES

velocity of pitch
along the x-axis,

a= %+

angle of attaok

in equation (3)

16

q introduces a variation of

(’-w
v

(5)

2at x=-c. This variable a is
3“

for the potential,

●

✎✌

●

&

@=ciVda2-y2

= aY’asin q
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Equathn (1)
lower eurfaoef3of

for
the

the pressure difference
airfoil may be written

9

between the upper and

m= 2f3v +y!
.-.

,

Carrying out the indtcated differentiation gives

The integration of
the value of Itit found
plus the additional term

The coefficient

with respect to

@ over the area of
in reference 2 for an

L1 e &+ & C&

2V

i~ formed.by divi~ion by

qE/2V is the stability

2pVqa sinq

the triangle gives
angle of attack ~,

—

1 v%5P y and Its derivative

derivative CLq* It is

(6)

The integration of
()
Z&
3

- xl!? over the area of tie triangle
. .

‘)2yields the pitching moment about the reference point *,O t This
\3

moment Is

M=- **v2b2c2*

The coefficient is defined.as the moment dividedby $gw’% and. iti3

derivative with respect to q5/2V is the stability derivative (& .
!l

The derivative is

. c%‘-32A (7)
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For the airfoil In rolling motion, any section x = ccmstant
is a rotating straight lineg LsmkJ(referenco ~) #ves the potxntial
of the two-dimensionalflow yroduced by tie rotation of an ellipse
a%out its center. In the limiting ca~e for which tie ellipse
becomes a straight line, the surface potential.is

where p is the angular velocity,

and cof3q =~e
a

Equatfon (1) for the pressure

a 1s the semiwiath of the line,

distribution takes the form

By use of equation ($), with C = ~, this

1

.

expression becomes

(9)

This antisymetric pressure distribution due to tiollingwas first
obtained and shown graphically in reference 4, F@.ures ~+and 5
herein are reproduced from this reference. Tigure 4 may be compared
with figure .3 of’reference 2 which shows the pressure d.istributian
due to angle of attack.

.

,

,

,
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The syanwise loading, following reference 2, is merely

with # evaluated
tribution is shown

at the trailing edge of the airfoil. The dif3-
in figure ~. - -

The integration of (IL’
—Y Q across
w

moment

L=-fi %~b P

.-

the span gives the rolline

Division by &@Sb converts this moment to coefficient form,

and the derivative with respect to pb/2V’ is the stability
.—

derivative Clp. It iS

-.

‘“(10)

DERIVATIWZ CZ
P

Case 1, No Dihedral

The pressure
has been givenby

where ~ is the
stream direction,

difference across a thin airfoil in steady flow
equation (1)

m = 2pvuo

component of induced velocity garallel to the
?neas-medalong the upper surface. If sideslip

occurs, the stre&m direction is inclined relative b the x-axis of
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the airfoil by the sideslip angle
sideslip in the positive dfrection

NACA TN NO 1423

13. Thus, with j3 positive for
along the y-axia,

m‘2””(?$w) (11)

The surface yotential @ for the’disturbance velocity depends
only on the normal velocity of points of the surface. The potential.
is therefore unaffected by sideslip when there is no dihedral, In
the present caee the normal velocfty is aV due to an@e of attack
and tie appropriate potential is that discussed in the section
on CL& ala C& and gfven by equation (3). Csrrying out the

differentiations
simplif’icatlon,

Indicated in equation

The symmetric first term is the lift
absence of sideslip. This term yields no
antisymmetric second term contributes the

(11) give~, after

)
+f3cot~

distribution in
rolling moment.
rollin~ moment

(u’)

the
The

L =-&V%2ca~”

The coefficient is formed..bydivision by $$fmb > and its

derivative with respect to ~ is the stability dm?ivatfve Cz .

It i.S
P

()
CID ~=-~a (13)

..

,
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Case 2, Dihedral Angle I’

If the wing has a small dihedral angle r (case 2), the angle
of attack on th~ left panel i.sreduced in sideslip by the amount 131’
and the angle of attack on the right panel is increased by that
amount● The flow pattern in a plane cutt~ the airfoil at a
distance x from ‘&e nose cm be obtained by a slight modification
of tho classical thin airfoil theory. (See reference 6.) TIM
left edge and right edge.of the section at x are to be identified,
respectively, wtth the leading edge and trailirg edge of’the section
of thin eirfoil tioory. The section is regarded as a small
deviation frm its chord. A distribution of vorticity along the
chord of the section is Wgined, Parap&asinBGlauert (reference 6),
the induced velocity w is determined for points on the chord but
may be taken to Le the same &or the corresponding points of the
section itself. The direction of the reeultent velocity adjacent
b the airfoQ rm.stbe parallel to the surface so that at each
point of the left panel

Tr=

w’
-~+a

and at each point of the right panel

(lkb)

The potential
the case for

corresponding to a is already known; therefore, only
a= O need be treated.

The vorticity assumed In the thiiiairfotl theory (reference 6)
has Q net circulation to satisfy the Kutta condition at the trailing

edge. The addition of a term
)

-m(.~ + ;hl csc o (with ?j written

for Glauert’s t3)eliminates the c~culation while retaining certain
mathematical properties. With this added tez’mthe vor%icity is
given as



TM velocity potential
related to the vort3.city k

#
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on the upper surface of the section is
by

‘J
a

~
‘2’

-k lily

Y

The angle q, ori~inally identified with Glauert’s 6, is now
defined differently so that y = a cos ~. Then the integration
of the equation for @ with dy = -a sin q &q gives

Equation (16) expresses the upyer surface potential for an
arbitrary distribution of induced vertical velocity along a line
b two”dimensionalflow without Circulcltlon.

The coefficients in equation (16) are EIti.11to be evaluated.
The calculation given on -pages88 to 90 of reference 6 when
a~plied. to equation (19) leads to

m

for the ratio of the induced downwara velocity to the stream
veloclty. The coefficients are given by the theory of Fourier
series as

,

(17)

.

D



,

.

For the sideslipptig &foil section with dihedral angle the .
boundary conditions on w/V has been given ‘inequations (ll~a~
end.(14b). By equation (17) the coefficients in this case are,
for a = 0,

Ao. o

.1

(18)

!kK ~~n yJm = fin
-..,

With the coefficients @ven in equation (1~), than, equation (16)
represents the additional yotcntj.alduo to dihedral that may be

substituted in equation (1.1), The terr~ 13~isfoundtobeof

the order $2 and’ thus may be neglected for &3 present purpose.
Iirtegratingthe pressure chordxrisegives the incremental spanwise
load dlst.ributioncaused by dihed~al a~ .-

/

T.E.
&Gt _
m L!(Pax

L,~.

.

The rolling momeut is

,

.,

L=- (!r )-a+@
T.E.

(J=@ \‘jisinapa?l
TI /T.E.

—. .-

. -~@a3@l - ‘3JjT.E
●
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. W, ~a at the trailingBy equation (18) Al = ~ and A3 = ~n

‘bedge a = ~. Thus, for the present case

The coefficient is formed by division by ~~&Sb and 3.tsderivative

with respect to ~ is the stability derivative Cl
P

for zero angle

of attack. The derivative is

(%)r=”ilm‘

The complete stability
preceding equation the
equation (13) so that

derivative is obtained by adding tQ tho
contribution of angle of attack given in

(19)

Case 1, No Dihedral

The reference ~obt for these calculations 3.sat.a di6tance 27

from the vertex of the triangle, ”ueasured.@.ongthe x-axis. Let the
stream velocity a% this point he V. Then ff the yawing velocity
is r, the longitudinal velocity at (x,y~ is V - ry and the

()
2sideslip velocity is -rx - -c . Let “thesee~ressions replace V

and pv, respectively, In eqiation (lt.1)so that

,

.

.L _
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The appropriate yotcntial @ is that ~iven by equation (~),
rhich iS

Carry- out the indicatad

.

. -—

(20)

Jo J-a ~ “

With ~ ~
= ac Cos a9 this moment is evaluated as

The coefficient

derivative vi.th

is definod as ‘&e moment tiivi.ded‘by

ree~ec% to rb/2V is the statiltty

for zero diheib?al. It is

()
cl
‘a = ‘!%

;*V2SII, and its

&&ivative C~r

. .

(21)

—
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Case 2, Dihedral Angle r

In tie section on Cl
B

dihedral was ehown to add an additional

terq which is given by equation (16), to the yotential, whero the
constants ~ are given by equaticm (18), h the present section

the variable sidesllp angle -;(X - $“1 replaces the constant

sldeslip angle ~ of the section on . The rolling moment duo
P

to the additional term is thus

.= -~vw(jll - =431,...

as was found in the section on Cz . By equation (18),

()

D
2with p=-:x --o,
3/

Al=- )N--+
3

4Fr
()

A3=_+
3’J’rv .

The substitution of the values of a, Al, and A, at -the&ai.li.ng

bedge, where a = - and x = c,
2

gi~es

The coefficient is formed as before by division by $3%%, anaitn

derivative with respect to rb/2V is

.-
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T!hisresult
to give the

1423 19

must be added to the result for case 1 (no dihedral)
total value of’the sta%ilfty derivative, as follows:

(22)

c%

The side force and yatilngImnent &31a%ive to lody axes are
contrilxxtodentilrelyhy auction along the leedirg edge of the king.
This suction may be evaluated ly considering the triangular wing to
have a small thickness so that tie sccticns x = constint are
ellipses. The lateral componaut of the pressure distrilnztionis
determined and.integrated. This a~roach ia given in detail in
rei’erence4 for tie case of rolling at zero angle of attack, ami
its extension to the case ~f rollim~ with a small..an#.eof attsck
was made in the original determination of Cyn smd

_._.

%
in the

present analysis. A very much simpler method of evaluatiw the
suction is sug~ested in reference 7, howover, and this method is”
adopted herein.

Consider a condftion for which the induced surface velocity
normal to the edge is of the form

(23)

in the immediate neighborhoofiof the edge, where s is dig@nceL
from th6 edge and G is a ccnstan%. Reference T-points out that
for such a flow there is a suction Zorce per unit length of et!Ge
which iS

~ = 3r@2 (24) -

in an incompressible fluid. %’or the namow tzzianglesdiscussed in
this paper the camponent of the stream velocity normal to the edges
is inherently small comywcd. with the veloclty of sound over the
range of stream Mach m.mhrs con~iderd.. !Iht?s,no compressibility
correction is necessary,
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I’or the triqjul.ar wing in
component u has been obtained
be written

rolling motion
as a factor ti

NACA TN No. 1k23

the Induced velocity
equation (9)and MY

Angle of attack will give the addl.tional.contribution (reference2)

The total induced.velocity component u on the upper surface is thue
,

Very near the edge thifi exprmwion is approxbmtel.y

where tie plus
tie left d.gc3.

sign refer~ to the right ed.~eand the minus sign to

If a similar calculation is made for v =
+
a it is found that ‘
Y’

as the edge is approached the ~esultant induced velocity &?

becomes normal to the edge. Thus, the normal velocity near the
edge is

a
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~~
,C

to the first order in C. The perpendicular distance of point (x,y)
from the edge is, to the same degree of acchacy,

The induced surface velocity very near the edge may therefore be
expressed approximately as

q=@-? tgpc$,4@

which is of the form or equation (23) already considered. The
. auction force per unit le&@ of &d&& by equ&hion (24) is thuw

where the plus sign refers to the
refers to the left edge.

.

b

)+2C%? t Civpcx

right edge and

The lateral component ot this suction force

J

c/’
y. &- FL)dx

o

= ‘i+C2c3aVp
3

the

is given by

—

minus sign
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The coefficient ie formed by division by

with respect to yb/2V i.ethe stability

The
triangle

WACA

$3+’%and the

m NO* 1423
.

derivative

It h3
L

(~~)

moment of the leadtiq_j-e@esuction &lout the vertex of tho
is ayproximatoly,for C2 << 1,

sc
No=- @’R “ ‘T,)x -

0

()The moment about the roferenc~ point ,2~,0 is

N=NO+Y

2.4a7p= -J& c

The moment coefficient is formetiky di%’iBiOnby ~$?Sb, and the

derivative with respect to @/2V is the stability derivative C
%?”

It is

(‘d“c Z(X=.—

a $lA

Caae 2, IMht.?dral.An@e r

(26)

To the first order in the dihedral angle I’, dihedral will not
change the pressure distribution, The inclination of the wing panels,
however, will Give rise to a latvral force component, as follows:

—

*

-.

.

.-

.

●

●
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y.+ y~ d?axay

for the right wing panel, and a similar e~ression with opposite
sign for the left wing panel. The pressure difference N’ has
been evaluated in equation (9) of the section on CZPS with ~is

value the integration gives

Divif3ionby $PFS and differentiation with respect to pb/2V give

the ticrement to the sta’’ilityderivative Oy caused.by dihedral a8
P’

By addition of the value obtained for the ease of no dihedral, the
complete derivative @ is

P

Cy ++

P
(27)

The pressure distribution is such that along any radial llne
from the vertex the pressure increases in proportion to xo For

such a distribution the center of pressure on each panel is at +

from the vertex. The yawing moment about tie reference point 2~,0
()

is

N=-($+)Y
‘. .

1 ~b3cp
‘-m

..
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Division by *V%% and differentiationwith res~ect ta pb/2V

give the increment to
c%

caused by diheitralas

,

L-

(%)c .*

r

By additiog of the value obtained for no dihedral the complete
derivative is therefore —

(28)

DERIVATIVES ~ AND Cn
P P

Case ~, No Dihedral

A little sideslip can readily le shown to have negligible
effect on the symmetrical distribution of suction along most ofl-the
leading edge. Nee& the trailing edge some modification may be
expected at subsonic speeds due to the altmred direction of the
traili~ vortex sheet. Any lateral force and yawing moment would
have to come from the small distudbed region. Examination indicates
that such a force or moment would be of order #p and hence zero
to the first order in a.

Case 2, Dihedral Angle r’ ,

The contribution of diheibxil.to the velocity component u
induced in sideslip is obtained by differentiating equation (16)
with respect to x. A term aVC csc q must be added for the
effect of angle of attack. After insertion of the constants from
equation (18)the totalvelocity component u is obtained as

3

+ Cos 211cot q

1
+sin (n-l

-1 ‘“.}
(29)

n

.

*
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The only terms that approach infinity
as ~—> O or Z) are the cosecant term ard

$-
that region both terms behave like ~,

25

near the edges (that is,
the cotangent term. In .-
with appropriate si~,

vhere s is the perpendicular distance from the edge. The veloclty
component u thero may %us be writtsn

where the plus
the left edge.

sign refers to the right edge end the minus sign to

~ it is found.asZf a similar calculation Is made for v =
by’

before that near the edge the normal.induced velocity yN iS

approx%natel.yequal to u/C to the firt3torder in C. Tnus, v~ is

of the form ~, and the corres~onding suction force per unit length
\/s

edge is F = fipG2, as indicated in a precedinG section.
of the expression for G, neglect of terms of the second
and simplification glyes

The lateral component of this suction force is

. 2p&cC2apr

Substitution
order in p,

.-

(30)

(31)

There is an additional lateral force due to a componeht of
the pressure actfng on the inclined parmls. The part of the
pressure caused ty dihedral will contribute terms of order 1’2*
To the first order in r, then, only tie pressure distribution



2G

in the absence of
Further, only the

NACA TN No. 1~~

dihedral (equation (12))need be considered.
antisymnetric cotangent term will contribute to

the latiwal force. The incre~ental lateral force is thus

s -2p#cc2a~r (32)

The total lateral force to the first order in I’ is Y1 + Y2.

This sum is seen to be zero, and hence tinelateral.force
derivatiw CyP is liketi.sezero.

Equation (12) sho~7sthat sideslip gives rise to a pressure dis-
tribution that is consts.ntalong radial lines from the vertex of the
triangle. (Suoh apresm.rre dif3tributim defines a conical flov~”
field.) Equation (12) is for-zero dihedral, but equation (16] leads
to the same behavior for the triangle with dihedral.. The center ofn
premm.we on each panel of the tzrianglewill he on the line x = ~.

So also will the center cf pressure of the leadfng-edge suction.

L)
There is thus no yawing moment about the reference point 2~,0 , and

the stability derivative Cn is zero.
P

DERIVATIVES i&r AND Cnr

In the case of yawing motion the local sidpslip velocity

‘s ‘f? - ‘)”
The suction F yer unit length of the leading edge

,

.

is obtahed by substituting this local stdeslip velocity for ~
in equation (30)derive~for sideslip, as follows:



NACA !l?NNO. 1423 27

(When ~ varies with

requires an additional

is finite at the edges
expression for Y.)

x, as ti the present case, equation (29)

term in $$ proportion.1 to r. This term

and, therefore, does not contribute to the

The lateral component of this suction

scy~,=(~ - FL)

o

=0

force is

(3X

(33)

me antieyume+.riccot~ent part of the pressure distribution
h equation (20) -v contribute a lateral force beca~e of tie
inclinat~on of the panels, To the first o~er in l’, this is the
only contribution, accordi~ to the reasoning in the section
on ~

P
and Cn ● The contrilnzttonis, to the first order in C!,

P

.—

(34)

The total.lateral force caused by yawing nmtlon is Y~ + Y2.

The lateral force derivative ~r is accordingly zero.

The leading-edge suction Gives rise to a pure yawin$ couple.
This couple is conveniently obtainedby computing tie moment of
the suction force about the vertex of the triangle,as follows

(C2 << 1):
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f

c
N1*- (~ - FL)X dx

Lo

12 4
,=, Yv ‘Nc

(35)

The pressure distribution on the inclined pa.rmlsof the wine
will have a lateral component that likewise contributes a pure
yawing couple. From equation (20) the couple is, to the first

2

)
-y cot~xdydx

()
x- ~$cosqdqdx

(36)

A third yawing couple will be contributed by elc~nfriction.
(Skin friction has not been considered.In evaluating the other
stability derivatives because Its direct contribution is expecteii
to be unimportant.--The indirect effect of skin friction In
influencing the pressure di~tribution via the boundary layer may
indeed.be important, although it is not treated.)

The skin friction couple is approximately given by:

ca
I?3=u %o@..~x-&)P+Y]axaY

o -a .- ..

—.

( -%)’}where VR is tie resultant velocity and VR2 = (V - ry)2 + r2 x

p is the local sideslip an@e ma equals -r(~ -$) and cm 3U
.

“v ‘
the section drag coefficient-which is taken equal tn wine profile
drag coefficient. ,
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To the first order h r this expression is

= -+w~occ4(1 ‘ ‘2) .

The total yawing moment caused by yaw~~ Btion is Ifl+ N2 + N3,

which is Just N3 because N1 and N2 canco10 The coefficient is &.- -. —

dividedby $V%b and.the derivative with respect %0 ~ is the

stability derivative ~.m Carrying out them3 o~erations gives
.--.-—---—

(37)

A similar calculation shows that the
friction is zero.

RESULT SAND DISC

side force due to skin

US SION

The valuea o%tained for the stability derivatives are
summarized in table I with respect to two systems of axes, One
system is the principal body axes of figure 1 with oriGln at tho

aeroO-c centel*fy,.,o). Th3.ther system

axes shown in figure 3 with origti a distance

the 27 point.

is the stability

Xcg ahead of

These stability derivatives apply to an isolated triangular
wing in the limiting case of aspect ratio approaching zero. Applica-
bility decreases wtithincreasing aspect ratio, end an aspect ratio ..~
is esthnated as the upper limit of utility. !J!lmmathematic~ valitity
at the very low aspect ratios nay be offset, perhaps, by error duo to
the neglected boundary layer.
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The arguments for the effects of compressibilitypresented in
reference 2 can %e cerried over to the present work. The stabiltty
derivatives presented herein, therefore, are expected to apply at
%oth subsonic end supersonic speeds, with the exception of the
transonic region, up to a limiting speed at which the triangle Is
no longer narrow compared with the Mach cone from its vertex.

The over-all pitching-moment derivatives should be little
effectedby the addition of a fuselage, the nose of which does not
pro~ect mch beyond the vertex of the triangular wing. The wing
will.orient the flow along the axis of the fusel~e and.lfhere~y
will elimlnate much oflthe unstable pitching moment of the fuselage.
The flow will continue to be esson%ially axial along the part of
the fuselage behind the wing because the low aspect ratio yields a
dovnwaeh an@e substantially equal.to the angle of attack.

Theoretical-considerationssuggest that the unsta%le yawing
moment of the fuselage will add to the value of Cn

B
for the wing

aloae. Little effect on
% ‘r C%

is expected. Little effect

on the rollhg-moment derivatives is expected If the wing is mounted
centrally on the fuselage. High-wing or low-wing arrangements,
however, should have pronounced effects on the effective dihetial.
These concluslcms are only tentative, and a yro~er evaluation of
the wing-fuselage interferencemust he the subject of further
Investigation.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., July 15, 1947
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Figure 1.- Velocities, forces, and moments relative to
principal axes with origti at ~.

Figure 2.- Axes and notation used in enal.ysis.
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Figure 3.- Velocities, forces~ and moments relative to
stability axes with origin at $ . ~gc ~~c~pa~

axes of figure 1 dotted in for comparison.
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Figure 4.- Distribution of pressure dfiferenoe caused by rolling.
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Figure ~.- Distribution along span of normal force .ca~ed by rolling.
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